
Science and Information Conference 2015
July 28-30, 2015 | London, UK

844 | P a g e
www.conference.thesai.org

A Framework for Providing a Hybrid Fault Tolerance
in Cloud Computing

Mohammed Amoon1, 2
1Dept. of Computer Science, RCC, King Saud University, P. O. Box: 28095-11437 Riyadh-Saudi Arabia

2Computer Science and Eng. Dept., Faculty of Electronic Eng., Menofia University, Egypt
mamoon@ksu.edu.sa, m_amoon74@yahoo.com

Abstract—Fault tolerance is a major challenge that should be
considered to ensure good performance of cloud computing
systems. In this paper, the problem of tolerating faults in cloud
computing systems is addressed so that failures can be avoided in
the presence of faults and the monetary profit of the cloud is
maintained. A framework is proposed in order to achieve reliable
platform of cloud applications. An algorithm for selecting the
most suitable fault tolerance technique is presented. Another
algorithm for selecting the most reliable virtual machines for
performing customers’ requests is presented.

Keywords—Fault tolerance; Cloud Computing; Replication;
Check pointing

I. INTRODUCTION
Cloud computing enables great changes to take place in

today’s IT with the global popularity of hybrid computing
environments [1]. There are many public cloud platforms such
as Amazon EC2/S3, Microsoft Azure, Google App Engine and
IBM SmartCloud, while a large number of enterprises and
institutions have established their own private cloud for
internal IT services. The main types of cloud service offerings
are: (1) Infrastructure-as-a-Service (IaaS), such as provided by
Amazon s3, (2) Platform-as-a-Service (PaaS), such as
provided by Microsoft Azure and (3) Software-as-a-Service
(SaaS), such as provided by Gmail [2].

By utilising cloud computing services, the high cost in
building and maintaining a computing environment for
accomplishing these services is effectively reduced [3]. Also,
clouds provide unlimited data and object storage and
computation for companies. Users can have computation tasks
accomplished on the cloud in a pay-as-you-go mode and will
not need setting up and maintaining their own computing
environment, which is particularly a cost-saving solution in
data- and computation-intensive applications such as
applications in scientific research [4], [5].

Although the main aim of the cloud computing systems is
providing the pervasive computing they are not free of failures
[6]. Failures of the cloud include hardware failures such as
resource crash, link down, etc. and software failures such as
extra load, programs removal, etc.

Failures are a common phenomenon in large scale
distributed computing such as cloud computing. In [7] and [8],
the worst cloud outages of 2013 and 2014 are listed,
respectively. Famous cloud providers in the market such as
Amazon, Dropbox, Facebook and Google Drive suffered

service interruptions in some areas. These outages cause
clouds to lose data, money and customer’s trust because some
customers’ services were unavailable totally or partially for
some time. For example, Amazon could have potentially
suffered close to $5 million in missed revenue for a single
hour of offline time [7]. Thus, an effective fault-tolerant
technique is mandatory and reliable cloud applications are
required to be deployed in such a way that cloud can
automatically recover from failures without affecting the
Quality of Service (QoS) needed and profit expected.

In this paper, both proactive and reactive techniques are
considered in order to provide a hybrid fault-tolerant strategy
for cloud computing systems. To be proactive, the strategy
assumes both the usage time of virtual machines and their
failure probability. To be reactive, the strategy applies both
task replication and checkpointing techniques. The paper
proposes an algorithm for selecting the suitable technique
according to the OoS requirements and the resources
availability information.

This paper is organized as follows: Section 2 presents fault
tolerance in cloud computing. Problem formulation is
introduced in Section 3. Section 4 provides the cloud
architecture and the details of the proposed algorithms. In
Section 5, mentions the related work. Section 6 presents the
conclusions.

II. FAULT TOLERANCE IN CLOUD COMPUTING
In general, fault tolerance techniques used in cloud

computing are proactive, reactive and task resubmission [9].
Proactive techniques require more information about cloud
resources and works in a probabilistic fashion. Decisions of
how to address possible failures in the cloud are made before
starting execution of an application. They avoid recovery from
faults by predicting the failure and proactively replace the
suspected components from other working components. This
potentially reduces the failure rates within cloud, and also
increases the capacity and throughput.

Reactive fault tolerance techniques reduce the effect of
failures on application execution when the failure effectively
occurs. Many reactive fault tolerance techniques are available
to be deployed in cloud computing systems. The most popular
techniques are checkpointing and replication. Checkpointing
enable the cloud to recover from failure and resume the
execution of the application starting from a point near at
which failure is occurred. This can be done be saving the state

Science and Information Conference 2015
July 28-30, 2015 | London, UK

845 | P a g e
www.conference.thesai.org

of the application periodically to a stable storage. In case of
fault, this saved state can be used to resume execution of the
application where the last check-point was registered instead
of restarting the application from its very beginning. This can
reduce the execution time and tolerate faults to a large extent.
The resumption of the application may be done on the same
VM after recovery or may be done on any other available VM.
This strategy involves more wasted time. This time is due to
the recovery of the failed VM in case of only one VM is
available for executing the application or it is due to the
rescheduling in case of multiple VMs are available.
Nevertheless, this technique is the most suitable if there is
only one copy of the required VM in the cloud.

Replication technique is based on the assumption that the
probability of a single VM failure is much higher than of a
simultaneous failure of multiple VMs. It avoids recomputation
by simultaneously starting several copies of the same
application on different VMs. With redundant copies, the
cloud can continue to provide the service in spite of failure of
some VMs carrying out application copies without affecting
the QoS requirements. There are two well-known mechanisms
following the replication strategy: multiversion and parallel. In
multiversion, the application is executed by multiple VMs in
parallel. Results from all VMs are introduced to a voting
mechanism which selects the best one according to the value.
In parallel mechanism, the application is executed by multiple
VMs in parallel but the first produced result will be taken into
account and all the other results are discarded. Parallel
mechanism is more concerned with the time of getting results
while multiversion is more concerned with the validation of
results[10].

The response time of parallel mechanism outperforms both
checkpointing and multiversion strategies. So, it can be
selected in case of critical-time applications. Checkpointing is
better than the other two strategies in terms of additional VMs
required. So, checkpointing is suitable when cloud has a
limited number of VMs. The multiversion strategy is better
than the other two strategies when validation of result is
required [10].

Task resubmission is the most widely used fault tolerance
technique in current scientific workflow systems. Whenever a
failed task is detected, it is resubmitted either to the same or to
a different resource at a runtime [8].

III. PROBLEM FORMULATION
Most of the existing clouds provide services to their

customers in the form of storage such as iCloud, Dropbox and
Google or in the form of computing such as Amazon Elastic
Compute Cloud (EC2)2. Services are provided by the cloud as
follows: customers submit their requests to the cloud with
their QoS requirements. The cloud determines the level of the
service and the required VMs after a negotiation with the
customer about the price. Then, VMs start providing the
service.

The Economy based objective of the clouds allows
resources to be used for some purposes for which they were
not originally designed. As a result, a large number of failures

may be occurred. These failures will have a great impact on
the availability, credibility and economy of the cloud [11].
This is because the system will search for another suitable
resource or VM to perform the customer’s service. This
affects the time needed to serve customers’ applications and
then degrades the performance of the cloud. Thus, there is a
need to minimize the effect of these failures on performance,
when occurred.

Most of the existing cloud systems provide fault tolerance
by replicating data and applications to be served by more than
one VM, simultaneously. For example, Amazon S3 stores
each object at multiple servers and Apple’s iCloud service,
similarly, rents infrastructure from both Amazon’s EC2 and
Microsoft’s Azure. Nevertheless, as increasingly common
reports of cloud outages attest, reliability remains imperfect
[12]. The replication approach has the following major
challenges:

1) In the cloud environment, there may be many VMs that
can fulfill customers’ QoS requirements, but they have a high
tendency to fail. In such a scenario, if the broker neglects the
failure history of VMs and its replicas when selected, the
likelihood of failures will be high. This eventually results in
compromising the user’s QoS parameters in order to complete
cloud applications.

2) It is too expensive to perform replication for all cloud
applications and VMs. This is because there will be a profit
charge lost when using extra VMs in serving the same
application, however these extra VMs can be exploited to
serve other applications. Thus, we only need to replicate
applications executed on the most valuable VMs that will have
a great impact on the performance of the cloud if they failed.
Determining the most valuable VMs is a great challenge.

3) There are some fault tolerance techniques rather than
replication such as checkpointing and parallel techniques.
Selecting the most suitable technique for each service is
another challenge in this work.

In this paper, in order to address the first challenge, we use
a heuristic that finds a list of the VMs that can fulfill
customers’ QoS requirements and sorts them in an ascending
order according to their failure probability.

In order to address the second challenge, we use a VM
classification heuristic to determine the most valuable VMs.
This heuristic depends on both the usage service time of VMs
and the reliability level introduced by the customer.

For the third challenge, an algorithm is proposed to select
the most suitable fault tolerance technique for the selected
VM. The algorithm depends on customers’ requirements such
as cost and deadline time of applications.

IV. CLOUD ARCHITECTURE
Figure 1 shows the level architecture of a cloud computing

system. Basically, it contains three main entities: Allocator,
Virtual Machines (VMs) and Physical Resources. The
Allocator acts as the interface between the cloud services
providers and customers. So, it requires the following

Science and Information Conference 2015
July 28-30, 2015 | London, UK

846 | P a g e
www.conference.thesai.org

modules to be involved in its structure:

1) Quality of Service (QoS) Controller: The main function
of this module is to ensure that the cloud can perform requests
of customers within the limits of the QoS requirements. The
most important QoS requirements include response time, cost,
reliability and security. The QoS controller receives a request
from customer along with his QoS requirements. It sends a
query request for suitable VMs to the VMs database and
receives a reply. If there are suitable VMs that can perform
the request within the needed QoS requirements, the QoS
controller will accept the request and delivers it to the Broker
who can make allocation decisions for binding user requests
to VMs. If there are no suitable VMs, the QoS controller will
reject the request.

2) VMs Database: It contains all information about VMs
in the cloud such as the speed, memory size, number of
processors, and bandwidth. Also, it contains information
about the usage history of each VM such as the usage time,
the failure time and the failure rate. This database is updated
according to the information received from the VMs Monitor.

Fig. 1. The level architecture of a cloud computing system

3) Broker: The Broker determines the VMs that can
perform customer requests and satisfy his/her QoS
requirements. It receives accepted customer requests along
with its QoS requirements from the QoS Controller. It needs
the latest status information regarding availability and
reliability of VMs in order to perform the binding process
between requests and VMs. It can get this information from
the VMs database. Also, the Broker has the main role in
determining the price for the services needed according to the
pricing mechanism used by the cloud. The pricing mechanism
determines how service requests are charged. For instance,
requests can be charged based on submission time, pricing
rates or availability of resources. Pricing is the basis of
managing the supply and demand of computing resources
within the cloud and facilitates in prioritizing resource
allocations effectively.

Figure 2 shows the internal structure of the Broker and
interactions between its components. It contains the following
components:

• VMFT Selection: The main function of this module is
to select the suitable fault tolerance technique for
customers’ applications. This module contains a
software agent called VM agent. This agent receives
the application along with QoS requirements from the
QoS Controller. It consults the VMs classifier module
and gets a classified list of VMs that can perform the
customer’s application and fulfill the QoS
requirements. Using Fault Tolerance Strategy Selection
(FTSS) algorithm (see subsection 4.1), the agent
selects the most suitable fault tolerance strategy. This
selection depends on customers’ requirements and the
available VMs. Then, it delivers the application to the
dispatcher along with a list of the identifiers of VMs
selected.

• VMs Classifier: The main purpose of this module is to
determine the VMs that will perform customers’
applications. The module contains a software agent
called VMC agent. This agent receives the QoS
requirements of the application from the VMFT
selection module. Then, it sends a query request to the
VMs database to get the latest status information of
VMs that can achieve the QoS requirements. It
classifies the VMs that can perform customer’s
application according to both the usage time and the
failure probability of the VMs. The details of the VMC
algorithm are presented in the next subsection 4.2.

Customers Applications’
Designers

Broker

VMs
Monitor

Physical
Resources

Virtual
Machines(VMs)

Allocator

VMs
Database

QoS Controller

Science and Information Conference 2015
July 28-30, 2015 | London, UK

847 | P a g e
www.conference.thesai.org

• Dispatcher: Once VMs are determined, the Dispatcher
delivers customer applications to start execution on the
selected VMs.

The second entity in the cloud computing system contains
VMs. VMs are built up of numerous physical or actual
resources. Each of these resources can be shared through
multiple virtual machines, which is what are offered to the
cloud customers. A VM typically emulates the physical
environment of the cloud and virtualization software is used to
map customer requests to the underlying physical resources.
The virtualization software can be used to create many
individual, isolated VM environments using the physical
resources of the cloud. Multiple VMs can be applied on a
single physical computer to meet customer requests by
partitioning the various resources on the same physical
computer to different VMs and then to different specific
requirements of customer requests. The VMs Monitor is
responsible for handling failures of VMs. It monitors VMs and
notifies the scheduler to update the VM database records in
case of a VM failure or recovery.

Physical Resources represents the third entity of the cloud
computing system. They are distributed in the cloud and are
employed by application designers to implement and deploy

Fig. 2. Broker components and their interactions

cloud applications. To execute their applications, customers
use physical resources of the cloud. Customers have no direct
access to these resources. They can access cloud resources
through VMs.

A. Fault Tolerance Strategy Selection (FTSS)
In this section, an algorithm for selecting the suitable fault

tolerance strategy is presented and explained. Since
collaborative solutions are much promising for handling fault
tolerance [13], the handling of our algorithm to this issue is
exclusively done by the cooperation provider and the
customer.

The algorithm uses the QoS requirements, submitted by
customers along with applications, and resources availability
information registered in the cloud to select the suitable
strategy. The steps of the algorithm will be as follows:

Input: cu is the application cost required by the customer,

u is the application deadline time required by the
customer,

ci the estimated cost if the application will be executed by
Virtual Machine i,

i the estimated time if the application will be executed by
Virtual Machine i,

m the list of most valuable VMs in the cloud,

j = 1;
While (there are applications not served)

{
For (each application Aj)

{
Find a list of all VMs that can execute Aj;
For each Virtual Machine i in the list do

If (cu < ci && u < i)
 remove virtual machine i from the list;

 If(list is empty)/*The application cannot be served */
{

Send “Application cannot be served” to
the QoS controller;

End the algorithm for Aj;
}

 Else /* The application can be served */
{

Sort the VMs list ascending based on ci x i;
If (there is more than one VM in the list)
/*replication is selected*/

 {
If (first VM in the list is in the m
list)/*valuable VM*/
{

Determine the number of replications;
If (validation is required)

Multiversion strategy is selected;
Else

Parallel strategy is selected;
}

 Else
Checkpointing strategy is selected;

 }
j++;
}

}/* while end*/

B. VMs Classification Algorithm
The main purpose of the VMC algorithm is to classify

cloud virtual machines according to the available information
about them. The information used in classification include the
time of virtual machine usage and the failure probability of the
virtual machine. The time of virtual machine usage, , is the
total time spent by the virtual machine i in executing cloud
applications. This time indicates the great value of the virtual
machine to the cloud system since more usage time of a VM
means that it is more valuable and profitable to the cloud.

The failure probability of a virtual machine provides an
indication about its failure history when invoked to execute
cloud applications and whether it needs applying fault tolerant
techniques or not. The higher the failure probability of a
virtual machine, the higher the need to be a fault tolerant one.

It is assumed that the number of virtual machine failures in
any two disjoint time intervals is independent over time.

VMFT
Selection

Application

VMs
Classifier

Dispatcher

To VMs

From VMs
Database

Science and Information Conference 2015
July 28-30, 2015 | London, UK

848 | P a g e
www.conference.thesai.org

Hence, it can be assumed resource failure probability to follow
a Poisson distribution. Thus, the failure probability
distribution of a virtual machine i is given by the formula:

Where is the number of failures occurring in a given

time interval and μ is the mean number of failures in the given
time interval for a virtual machine i. The value of the failure
probability is in the range of (0, 1).

The virtual machine classification module in the VMs is
responsible for classifying virtual machines of the cloud. This
module obtains the virtual machine usage time and the virtual
machine failure probability from the virtual machine
monitoring module. Then, it constructs a list of the most
valuable virtual machines based on the formula:

Where is the selection parameter used to determine

virtual machines to be replicated when an application is
assigned to be executed by virtual machine i.

In this paper, the virtual machine with a higher value of
is considered more valuable than a virtual machine with a

lower value of . More valuable virtual machines have higher
priority of replication than other virtual machines because the
failure of it will have great impact on the performance of the
cloud. Thus, these virtual machines have higher fault-
tolerance needs than other less valuable virtual machines.

Based on the value of Si, virtual machines can be sorted in
descending order and the top m virtual machines can be
selected as the most valuable ones. Only applications that will
be executed on these m virtual machines will be replicated.
The value of m is determined according to the QoS
requirements determined by customers when submitting their
applications.

V. RELATED WORK
A large number of research efforts have already been

devoted to fault tolerance in the area of grid computing.
However, a little work has been done for fault tolerance in
cloud environments. Aspects that have been explored include
the design and implementation of fault detection services, as
well as the development of failure prediction, and recovery
strategies. The recovery strategies are often implemented
through task replication reactive techniques.

Alhosban et al. [14] have proposed a fault occurrence
likelihood estimation and exception handling technique. Their
technique is divided into two phases: Phase I, service
reliability and utility and Phase II, runtime planning and
evaluation. In Phase I, the fault likelihood of the service is
assessed. In Phase II, a recovery plan to execute in case of
fault(s) is built. They have calculated the overall system
reliability based on the fault occurrence likelihoods assessed
for all the services. Their technique support dynamic
management based on the changes in user requirements and
QoS levels.

In [15], P. Das and P. M. Khilar have proposed a reactive
fault tolerance technique to reduce the service time and to
increase the system availability. They have integrated the fault

tolerance with virtualization. The basic fault tolerance
mechanism used in their model is replication. They have
performed replication in form of software variants running on
multiple virtual machines. Their model not only tolerate faults
but also reduce the chance of future faults by not assigning
tasks to virtual nodes of physical servers whose success rates
are very low.

Z. Zheng et al. [10] have proposed a component ranking
framework for building fault-tolerant cloud applications. Their
proposal includes two phases. The first phase identifies the
significant components in a cloud application. They have
employed component invocation frequencies for making
component ranking. The second phase employs an algorithm
to automatically determine an optimal fault-tolerance strategy
for the significant cloud components.

K. Ganga and S. Karthik[16] have classified the fault
tolerance techniques as proactive and reactive techniques. In
proactive techniques, the failure is predict and the infected
resources are replaced by uninfected ones. Reactive
techniques use checkpointing, replication and resubmission in
a try to reduce the effect of failures when occurred. The main
target in [16] was to apply job replication on scientific
workflow systems.

An approach for realizing generic fault tolerance
mechanisms is presented by Jhawar, Piuri and Santambrogio
[12]. They have presented their approach as independent
modules. The approach validates fault tolerance properties of
each mechanism and matches between user’s requirements
and the available fault tolerance modules to obtain a
comprehensive solution with desired properties. Also, a
framework is designed that allows the integration between
provider’s system and the existing cloud infrastructure.

Reviewing literatures reveals that most of the previous
works done are mainly based on using the response time and
number of failures as the main criteria for selecting VMs for
customers’ applications. There is no work done that considers
the usage time or the failure probability of VMs.

Also, most of the previous work considers only on
technique for fault tolerance, mostly replication with a static
or fixed number of replicas. Thus, extra VMs will be used in
executing user applications. As a result, cloud will lose the
monetary benefit of these VMs. So, a way is required to
provide a dynamic number of replicas to maintain the
monetary profit of the cloud.

VI. CONCLUSION
In this paper, we have proposed a fault tolerance

framework for an economy based cloud computing systems.
The proposed framework enables a service provider to offer
fault tolerance support to customers’ applications. We
presented our framework as independent modules. Two
algorithms that represent the main work of the framework are
presented. The first algorithm is used to select VMs for
customers’ applications depending on both usage time and
failure probability of VMs. The second algorithm is for
selecting a suitable fault tolerance technique. The algorithm
uses a dynamic number of replicas if replication is selected as
the fault tolerance technique. Our future work will mainly be

Science and Information Conference 2015
July 28-30, 2015 | London, UK

849 | P a g e
www.conference.thesai.org

driven toward the implementation of the framework to
measure the strength of fault tolerance service and to make an
in-depth analysis of the cost benefits among common service
providers.

REFERENCES
[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, “Cloud

computing and emerging it platforms: vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, Vol. 25, 2009, pp. 599–616.

[2] S. O.Kuyoro, F.Ibikunle and O. Awodele, “Cloud Computing Security
Issues and Challenges,” International Journal of Computer Networks
(IJCN), Vol. 3, Issue 5, 2011, pp. 247-255.

[3] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, “The cost of
doing science on the cloud: the montage example,” in: ACM/IEEE
Conference on Supercomputing, SC’08, Austin, Texas, 2008, pp. 1–12.

[4] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia,
Above the clouds: a Berkeley view of cloud computing, Technical
Report No. UCB/EECS-2009-28, University of California at Berkeley.
Available: http://www.eecs.berkeley.edu/ Pubs/TechRpts/2009/EECS-
2009-28.pdf (accessed on: 24.10.2011).

[5] L. Wang, M. Kunze, J. Tao, G.v. Laszewski, “Towards building a cloud
for scientific applications”, Advances in Engineering Software, Vol. 42,
2011,pp. 714–722.

[6] A. Gómeza, L.M. Carril, R. Valin, J.C. Mouriñoa, C. Cotelo,” Fault-
tolerant virtual cluster experiments on federated sites using BonFIRE,”
Future Generation Computer Systems 34 (2014) 17–25.

[7] The worst cloud outages of 2013, Online, cited 01.07.2013. URL:
http://www.infoworld.com/slideshow/107783/the-worst-cloud-outages-
of-2013-so-far-221831.

[8] The worst cloud outages of 2014, Online, cited 01.01.2015. URL:

http://www.infoworld.com/article/2606209/cloud-computing/162288-
The-worst-cloud-outages-of-2014-so-far.html.

[9] K.Ganga and Dr S.Karthik, “A Fault Tolerant Approach in Scientific
Workflow Systems based on Cloud Computing,” Proceedings of the
2013 International Conference on Pattern Recognition, Informatics and
Mobile Engineering (PRIME), February 21-22, 2013, pp 378-390.

[10] Z. Zheng et al.,” Component Ranking for Fault-Tolerant Cloud
Applications,” IEEE Transactions on Services Computing, Vol. 5, No. 4,
Oct.-Dec. 2012, pp. 540-550.

[11] R. Jhawar, V. Piuri and M. Santambrogio, “Fault Tolerance
Management in Cloud Computing: A System-Level Perspective,” IEEE
Systems Journal, Vol. 7, No. 2, June 2013, pp. 288-297.

[12] Ennan Zhai, David Isaac Wolinsky, Hongda Xiao, Hongqiang Liu,
Xueyuan Su, and Bryan Ford, ”Auditing the structural reliability of the
clouds,” Technical Report YALEU/DCS/TR-1479, Department of
Computer Science, Yale University, 2014. Available at
http://cpsc.yale.edu/ sites/default/files/files/tr1479.pdf, accessed on
March 9, 2014.

[13] A. Tchana, L. Broto and D. Hagimont, “Approaches to Cloud
Computing Fault Tolerance,” Proceedings of International Conference
on Computer, Information and Telecommunication Systems (CITS),
May 14-16, 2012, pp. 1-6.

[14] A. Alhosban et al, “Self-healing Framework for Cloud-based Services,”
Proc. of 2013 Int’l Conf. on Computer Systems and Applications, May
27-30.

[15] P. Das and P. M. Khilar, “VFT: A Virtualization and Fault Tolerance
Approach for Cloud Computing,” Proc. of 2013 IEEE Conference on
Information and Communication Technologies, Thuckalay, Tamil Nadu,
India, April 11-12, pp. 473-478.

[16] K. Ganga and S.Karthik, “A Fault Tolerent Approach in Scientific
Workflow Systems based on Cloud Computing,” Proc. of the IEEE
International Conference on Pattern Recognition, Informatics and
Mobile Engineering, Feb. 21-22, 2013, pp.117-122

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

